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orientation of H0 with respect to the molecular axes 
(9H) can tell us the type of motion involved. This sort 
of information is quite analogous to the line-narrowing 
studies of molecular rotation done in conventional 
resonance. 

B. Intermolecular Contributions 

I t is a straightforward matter to generalize Eq. (87) 
to take into account the intermolecular contribution. 
The labels i and j then refer to atoms not necessarily 
in the same molecule. We get a particularly simple 
form when the molecules can only jump about a 2-fold 
axis perpendicular to the internuclear line within the 
molecule, as when the protons of a water molecule ex­
change positions. Let us use the labels i, q, and r to 
label the positions of the nuclei which will be involved 
in the dipole sum. We let q and r stand for the two sites 
within a molecule whose nuclei exchange positions. We 
assume the other nuclei i do not move when nuclei at q 

I. INTRODUCTION 

TH E series of compounds Mg2Si, Mg2Ge, Mg2Sn, 
and Mg2Pb have the interesting property that 

while the first three members of the series are semi­
conductors, Mg2Pb has electrical properties which are 
definitely of a metallic nature. The transition appears 
to be smooth and occurs somewhere in the alloy system 
Mg2(Sn)a;(Pb)i_a:. The present work reports results of 
band-structure calculations on the first two members of 
the series. These have been carried out using pseudo-
potentials which were originally evaluated for the 
elements separately. Although there has been some 
discussion of the usefulness of these pseudopotentials, 
the present calculation is, as far as the author knows, 
the first one for a compound which takes over the 
pseudopotentials determined separately for the various 
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and r interchange. Then we get 

1 2 
— = - Hi{Aiq-Airy/Y:i(Aiq +Air*), (92) 
Tc r 

where 
Aiq^(l/riq*)(3cos*diq-l). (93) 

I t is important to realize that Eq. (92) holds true as 
long as the various dipolar and Zeeman terms can ex­
change energy in the rotating reference frame. To the 
extent that this holds true, Eq. (92) automatically 
takes care of splittings of the resonance into several 
components, as when one has a Pake doublet in a 
water molecule. 
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constituent elements, one metallic and one insulating. 
The approximations involved in doing this are dis­
cussed in the text. 

Experimental measurements of the electrical proper­
ties have been made on polycrystalline samples of all 
members of the series by Busch and Winkler1'2 and of 
the resistivity and Hall effect on single crystals of 
magnesium silicide and germanide by Danielson and 
co-workers.3-5 Piezoresistance measurements of mag­
nesium silicide6 have been made and the position of 
the bottom of the conduction band determined from 

1 G. Busch and U. Winkler, Physica 20, 1067 (1958). 
2 U. Winkler, Helv. Phys. Acta 28, 633 (1955). 
3 R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev. 

109, 1909 (1958). 
4 R. D. Redin, R. G. Morris, and G. C. Danielson, Phys. Rev. 

109, 1916 (1958). 
5 M. W. Heller and G. C. Danielson, in Proceedings of the Inter­

national Conference on Semiconductor Physics, (Czechoslovakian 
Academy of Sciences, Prague, 1961), p. 881. 

6 W. B. Whitten and G. C. Danielson (to be published). 
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Pseudopotentials previously calculated for metallic magnesium and semiconductors silicon and germanium 
are used to calculate the electronic energy-band spectra of magnesium silicide and magnesium germanide. 
Results are obtained for the energy gap and the positions of the valence-band maximum and conduction-band 
minimum which are in agreement with what is known experimentally about these substances. The use of the 
energy levels determined is discussed in interpreting ultraviolet reflectance spectra of these compounds. 
Finally, on the basis of the present calculations, some speculations are made about the nature of the electron 
and hole energy surfaces in the semimetallic region of the alloy system Mg2 (Sn)^ (Pb)i_a.. 
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these. The agreement between these experimental 
results and the present calculations is good enough to 
indicate that the calculated band structure can be used 
as a basis for interpreting further experimental results 
for the two compounds. 

II. STRUCTURE 

The series of compounds with the chemical formula 
Mg2X where X is silicon, germanium, tin or lead, all 
crystallize with the calcium fluoride structure. The 
positions of the atoms in the unit cell are shown in Fig. 1. 
The electropositive magnesium atoms occupy the sites 
which electronegative fluorine atoms occupy in calcium 
fluoride, while the electronegative group IV metals 
occupy the calcium atom sites. The lattice has face-
centered cubic translational symmetry and the appro­
priate Brillouin zone is given for reference purposes in 
Fig. 2. The values of the lattice parameters were taken 
to be: 

Mg2Si \a— Ylffll atomic units, 

Mg 2 Ge:a= 12.053 atomic units, 

Mg2Sn : a = 12.783 atomic units, 

Mg2Pb: a= 12.918 atomic units. 

From the band picture point of view it is most conven­
ient to regard the four s electrons from the magnesium 
atoms and the four s and p electrons from the group 
IVb metal as making up the eight electrons per unit 
cell which go into the valence band. The irreducible 
representations which classify the energy levels both 
within the Brillouin zone and on the surface faces are 
those for the face-centered cubic lattice. 

III. THE ENERGY-BAND CALCULATIONS 

The method of calculating the energy bands is the 
simple one of expanding the wave function in terms of 
a finite sum of plane waves and diagonalizing the result­
ing Hamiltonian matrix. The convergence of the eigen­
values is checked directly by introducing extra plane 
waves into the expansion and recomputing the eigen­
values. If this expansion is used with a crystal Hamil­
tonian which contains the atomic-like potential around 
the atoms, then the convergence of such a series is 

FIG. 1. Atomic arrange­
ment in Mg2Si. 

FIG. 2. Brillouin zone 
for face-centered cubic 
lattice. 

known to be poor. However, recent work7 has shown 
there is almost complete cancellation of the large 
negative potential energy that a valence electron sees in 
the core region by its own large positive kinetic energy. 
The details of the cancellation are given in the previous 
reference. Because of this cancellation, the wave equa­
tion may be written: 

(T+V+VB)<P=E<p. 

The term (V+VR) is the net, weak pseudopotential 
and because of the cancellation of V by VR, the pseudo-
wave function <p is then well approximated by an 
expansion in plane waves. 

In the present calculation, convenient pseudopo-
tentials were chosen from the start. For the atoms of 
silicon and germanium these were taken from the work 
of Brust,8 and for magnesium from the work of Harri­
son.9 From Brust's data, which is a set of Fourier 
coefficients of pseudopotential, defined only for the 
first few reciprocal lattice vectors in crystalline silicon 
and germanium, and chosen to fit the experimentally 
determined band structure, a smooth curve was drawn 
so that Fourier coefficients for any other values of the 
lattice parameters could be obtained. The restriction 
imposed by Brust that for the larger reciprocal lattice 
vectors the Fourier coefficients should vanish was 
retained. From Harrison's work, a graph of a similar 
function for magnesium was obtained from | k | = 0 out to 
| k | = 2k F, where hv is the Fermi momentum for magne­
sium. From this point a smooth exponential tail was fit­
ted onto the graph so that the function went effectively 
to zero at about | k | = 2.4 atomic units. Thus both these 
curves are determined for the atoms in the form of 
crystals of the elements. The present method thus 
makes the approximation of assuming that these 
atoms give rise to a similar pseudopotential when they 
exist in compounds, and therefore the only changes in 
the values of the Fourier coefficients of pseudopotential 
are due to changes in the lattice parameter. I t is 
recognized here that while this may be true for the 
contributions to the pseudopotential from the core 
states, any part due to self-consistent adjustments of 

7 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 
8 D. Brust (to be published). 
9 W. A. Harrison, General Electric Research Laboratory, Report 

No. 63-RL-(3322M), May 1963 (unpublished). 
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the valence-band charge density must alter from one 
environment to another, the changes being smaller 
where the bonding of the valence electrons is similar 
from one crystal to another. Several other approxima­
tions are involved in using the above form of the 
pseudopotential. I t is well known10,11 that the actual 
pseudopotential, written above as (V+VR) is a non­
local function, the repulsive term V% being defined by 
a complicated integral. The errors involved in replacing 
this complicated function by the simpler and more 
manageable one used above have been considered in 
some detail by Cohen and Heine.7 Firstly, it is to be 
expected that the pseudopotentials used above, as 
originally defined by Brust and Harrison, will only be 
good for calculating energies which lie near the free-
electron Fermi energy for the magnesium lattice and 
also for energies which are close to the band-edge 
energies in silicon and germanium. Strictly speaking, 
this puts inconsistent demands on the results for the 
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FIG. 3. (a) Energy bands for Mg2Si. (b) Energy bands for Mg2Ge. 

10 J. C. Phillips and L. Kleinman, Phvs. Rev. 116, 287 (1959). 
11 E. Antoncik, Phys. Chem. Solids 10, 314 (1959). 
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present problem. However, the Fermi energy for 
magnesium is 0.69 Ry, the corresponding figure in 
silicon and germanium is about 0.8 Ry, and the inter­
esting levels in the present compounds turn out to be in 
the range 0.7-0.8 Ry measured from the bottom of the 
valence band. From this point of view, the situation 
seems quite favorable. A further limitation is that in 
reducing the pseudopotential to a simpler form, it is 
implicit that a different function should be used to 
calculate levels of different symmetries. In the present 
calculation, it turns out that the state at the top of the 
valence band in both compounds, has a wave function 
whose symmetry is p-likt about the origin (a silicon or 
germanium atom). There are no other contenders for 
this position. The lowest state in the conduction band, 
however, has a leading term of s-like symmetry. The 
calculations indicate that other states which might be 
the bottom of the conduction band also have leading 
terms of s-like symmetry. Thus in treating these states 
the calculation is consistent, although inconsistency 
occurs in using the same pseudopotential for the top of 

TABLE I. Comparison of calculated and experimentally 
measured properties. 

AEcaic (eV) A£Bx. (wn/w0)caic(wu/wo)caio 

Mg2Si 1.3 0.77a 0.69 0.25 
Mg2Ge 1.6 0.74a 0.63 0.25 

Values for the effective masses of w-type compounds have 
been given asb: 

Mg2Si mn = 0A6 
Mg2Gemn-0.18 

a See Refs. 1 and 2. 
b See Refs. 3 and 4. The values for A E E X . given by these workers differ 

somewhat from those given above, bu t no t significantly for the present 
comparison. 

the valence band and could well lead to large errors in 
the value of the energy difference between levels of 
different symmetry from which the energy gap arises 
in the present problem. Experience has shown that 
s-p differences in the pseudopotential are smallest in 
the third row of the periodic table, which contains both 
magnesium and silicon. 

The results obtained for the band structures of 
magnesium silicide and magnesium germanide by the 
above method are shown in Fig. 3. The particular 
results shown were obtained with 51 plane waves in the 
expansion of the wave function. Calculations with 89 
plane waves have been made for the symmetry points 
and these show no major changes in the band structure 
from that given in the figures. The energy matrix was 
diagonalized directly on the University of Chicago 
IBM-7094 computer system. Representations of the 
groups of k were used to classify the energy levels from 
the coefficients of the plane waves, although in most 
cases this could be done by inspection. The results are 
very similar for the two compounds. The top of the 
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valence band is at the origin and is a T^ level in each 
case. The over-all nature of the valence band is very 
similar to other semiconductors which have face-
centered cubic translational symmetry and eight elec­
trons per unit cell to go into this band. This is found 
not to change very much both in the group IV semi­
conductors and the III-V compounds. In the present 
calculation, the valence band is again found to be very 
stable to changes in the pseudopotential. The bottom 
of the conduction band is found to be at the zone face in 
the [100] direction, and is a level of type X± in both 
cases. The presence of the level X 3 just above Xi is 
somewhat disturbing. The leading term in the expan­
sion of the wave function for level X 3 is d-like. Clearly 
this level is not treated very accurately by the present 
method. The position of this level is therefore not well 
known from the present calculation. 

Calculated values for the energy gaps and effective 
mass components for electrons at the bottom of the 
conduction bands are given in Table I along with ex­
perimentally measured values. 

TABLE II. Bonding nature of some levels in magnesium silicide. 

TABLE III. Calculated optical transitions and Van Hove 
singularities in magnesium silicide and magensium germanide. 

T i 5 

T i 
X5 ' 

xl X3 

U 
u u 

Si-Mg 

Bonding 
Antibonding 

Bonding 
Bonding 
Bonding 

Nonbinding 
Bonding 

Nonbonding 

Si-Si 

Antibonding 
Antibonding 
Antibonding 
Antibonding 

Bonding 
Bonding 

Antibonding 
Nonbinding 

Expansion 
round Si 

P 
s 
P 
s 
d 
p 
s 
d 

Expansion 
round Mg 

P 
s 
P 
P 
s 

s 

Because no new parameters have been added to this 
calculation, the values for the energy gap in these 
substances may be considered to be in good agreement 
with experiment. The position of the bottom of the 
conduction band is in agreement with that found6 from 
measurements of piezoresistance in magnesium silicide. 

The bonding or antibonding nature of the wave 
functions between a silicon atom and its nearest neigh­
bor magnesium and silicon atoms is of some interst and 
this is shown in Table I I . Also shown are the leading 
terms in a spherical harmonic expansion of the wave 
function about a silicon and a magnesium nucleus. 
The term "nonbonding" for the functions L/ and L3 is 
used to indicate that the direction lies in a nodal plane 
of the wave function. The tendency of bonding orbitals, 
with low values of angular momentum, to form the 
states in the valence band can be noted from the table. 

The complete calculation of course has to include 
relativistic corrections to the energies. Since the pseudo-
potentials used for silicon and germanium were empiri­
cally determined, the difficulties associated with in­
cluding these corrections are discussed later. 

Transition 

r i 5 - * r i 
Xs —> Xi 

w -> u 
A 3 —> Ai 
Kt -> K! 
Ti5 —> T2b 
A5—> Ai 

X 5 —> X% 
2)4 —>Si 

•u-*u 
A 6 - > A 2 ' 
A3 —» A3 

Type of 
Mg2Si 

Mo 
MQ 
MQ 
Mi 
M0 

Mi 
MG 
Mi 
M2 
M3 
Mz 

singularity 
:Mg2Ge 

Mo 
Mo 
Mo 
Mi 
Mo 

Mi 
Mo 
Mi 
M2 
Mz 
Ms 

Energy (eV) 
Mg2Si:Mg2Ge 

2.84 
3.10 
3.18 
3.28 
3.47 
3.67 
3.75 
3.77 
3.81 
4.10 
4.30 
4.37 

2.51 
3.26 
3.20 
3.28 
3.68 
4.20 
4.08 
4.04 
3.96 
4.40 
4.27 
4.69 

IV. OPTICAL PROPERTIES 

Recent work12 has shown that many details of the 
electronic band structure in different types of solids 
may be obtained by critically studying the structure of 
the imaginary part of the complex dielectric constant 
function e2(o>). This is obtained experimentally from 
reflectance measurements in the energy range between 
about 1 and 10 eV. I t can be shown (see for example, 
Ref. 12) that the analytic singularities in the expres­
sion for €2(00) arise from those of the joint density-of-
states function: 

dNa 

dE 

1 

i VkEij 
-dSk 

where Eij(k) = Ej(k) — Ei(k) is the difference in energy 
between conduction- and valence-band states. The 
effect of the singularities in dNij/dE due to | V kE%j | = 0 
has been studied in detail.13-14 The Van Hove singu­
larities in e2(co) may be deduced from a knowledge of the 
critical points in k space, that is points in k space for 
which I \7kEij\ = 0. These are obtained from the band-
structure calculations for the allowed transitions. The 
different mathematical behavior of dNij/dE near the 
critical points can give rise to four different kinds of 
singularities. These are either thresholds or saddle-
points and are shown in Fig. 4. The dipole allowed 
transitions at the critical points in magnesium silicide 
and magnesium germanide are listed in Table I I I for 

FIG. 4. Van Hove 
singularities in the 
density of states of 
E(k) ranging over 
a three-dimensional 
Brillouin zone. 

12 J. C. Phillips, Phys. Rev. 125, 1931 (1962); 133, A452 (1964); 
Phys. Rev. Letters 12, 142 (1964). 

13 L. Van Hove, Phys. Rev. 89, 1189 (1953). 
14 J. C. Phillips, Phys. Rev. 104, 1263 (1956), 
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transitions to the first two conduction bands. The type 
of edge expected (Fig. 4) is denoted as well as the 
energy for the transition calculated from the present 
band-structure results. 

A further factor affecting the interband transitions 
is the oscillator strength: 

/J7(k)~|<ky!/>|I0I2/(£-£,•)• 
The square of the matrix element has been examined 

in some detail for the case of silicon by Brust.8 This is 
found to be roughly constant throughout the zone, 
varying by less than a factor of 2. If it is assumed that 
the same results apply in the present case, then the 
reflectance spectra will be directly interpretable in 
terms of singularities shown in Table I I I . Experi­
mental measurements of the reflectance spectra have 
not yet been made and it is interesting to speculate a 
little on the basis of the above results. In particular 
the transition A3 —> Ai, which shows up as the leading 
peak in €2(00) for germanium, has the same type of 
singularity (Mi) in both cases. Further, in both cases 
the energy contours for Ej—Ei around this singularity 
indicate a high joint density of states and hence a high 
contribution in each case. This feature in €2(0;) in 
germanium might thus be expected to be reproduced for 
the present compounds. Further comparisons are in­
creasingly difficult due to the different nature of the 
singularities for particular transitions. Phillips12 has 
pointed out the insensitivity of reflectance spectra to 
changes in atomic composition in the diamond and 
zincblende structures. This suggests a scheme based 
on the nearly free-electron approximation, where the 
dominant features would be determined by the shape 
of the Brillouin zone. Such a scheme cannot be neglected 
for the present compounds and a comparison of their 
reflectance spectra with those of the diamond and 
zincblende structures is an obvious first step in inter­
preting them once they have been measured. I t will be 
interesting to see if such a scheme is still a good one 
for the present case where there are three atoms per 
unit cell. 

V. CONCLUSION 

The calculation reported here shows that a pseudo-
potential determined for an atom in one crystal en­
vironment can be carried over and used to determine 
energy levels in another crystal under certain suitable 
conditions. These are: 

(a) The energy levels to be computed must lie within 
the same range on the unperturbed free-electron picture 
for each lattice. 

(b) The contributions to the pseudopotential from 
the self-consistent valence-band charge do not differ 
appreciably from one crystal to the other. 

(c) Proper consideration is given to the errors intro­
duced by the more general problem of using a local form 
of pseudopotential. 

Conditions (a) and (b) are seen to be fairly well 
satisfied in the present problem and some indication 
has been given as to which energy levels are expected 
to be badly described due to errors introduced by (c). 

A full band structure calculation should of course 
include relativistic effects in the results. Because of the 
empirical nature of the silicon and germanium pseudo-
potentials, this has not been done in the present case. 
The whole aim of the calculation has been to extract as 
much information as possible to form a basis for in-
terpretating such experimental results as ultraviolet 
reflectance measurements and studies of transport 
properties so that these may be used to set up the correct 
energy level scheme. However, work is going ahead to 
see if the relativistic shifts in the levels can be re­
sponsible for making the conduction and valence bands 
overlap in order to account for the transition from semi­
conductor to semimetal in the alloy series Mg2 (Sn)x 

(Pb)i_x as x decreases. 
The present calculations have shown what changes 

are necessary in the pseudopotential to produce this 
transition. These indicate that overlap will occur to 
produce hole surfaces at k = p)0Cf| and electron surfaces 
at k=p.0(T]. More detailed calculations of the rela­
tivistic effects are being carried out to determine if 
these would move the bottom of the conduction band to 
another point in the Brillouin zone and thus produce a 
different configuration for the electron surfaces. 
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